241 research outputs found

    Dynamical phase transition in one-dimensional kinetic Ising model with nonuniform coupling constants

    Full text link
    An extension of the Kinetic Ising model with nonuniform coupling constants on a one-dimensional lattice with boundaries is investigated, and the relaxation of such a system towards its equilibrium is studied. Using a transfer matrix method, it is shown that there are cases where the system exhibits a dynamical phase transition. There may be two phases, the fast phase and the slow phase. For some region of the parameter space, the relaxation time is independent of the reaction rates at the boundaries. Changing continuously the reaction rates at the boundaries, however, there is a point where the relaxation times begins changing, as a continuous (nonconstant) function of the reaction rates at the boundaries, so that at this point there is a jump in the derivative of the relaxation time with respect to the reaction rates at the boundaries.Comment: 17 page

    Occam's Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel

    Full text link
    A stochastic process's statistical complexity stands out as a fundamental property: the minimum information required to synchronize one process generator to another. How much information is required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state-indistinguishability provides a quantum advantage. We generalize this to synchronization and offer a sequence of constructions that exploit extended causal structures, finding substantial increase of the quantum advantage. We demonstrate that maximum compression is determined by the process's cryptic order---a classical, topological property closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient algorithm that computes the quantum advantage and close noting that the advantage comes at a cost---one trades off prediction for generation complexity.Comment: 10 pages, 6 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/oqs.ht

    Optimizing Quantum Models of Classical Channels: The reverse Holevo problem

    Get PDF
    Given a classical channel---a stochastic map from inputs to outputs---the input can often be transformed to an intermediate variable that is informationally smaller than the input. The new channel accurately simulates the original but at a smaller transmission rate. Here, we examine this procedure when the intermediate variable is a quantum state. We determine when and how well quantum simulations of classical channels may improve upon the minimal rates of classical simulation. This inverts Holevo's original question of quantifying the capacity of quantum channels with classical resources. We also show that this problem is equivalent to another, involving the local generation of a distribution from common entanglement.Comment: 13 pages, 6 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/qfact.htm; substantially updated from v

    Extreme Quantum Advantage for Rare-Event Sampling

    Get PDF
    We introduce a quantum algorithm for efficient biased sampling of the rare events generated by classical memoryful stochastic processes. We show that this quantum algorithm gives an extreme advantage over known classical biased sampling algorithms in terms of the memory resources required. The quantum memory advantage ranges from polynomial to exponential and when sampling the rare equilibrium configurations of spin systems the quantum advantage diverges.Comment: 11 pages, 9 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/eqafbs.ht

    Static- and dynamical-phase transition in multidimensional voting models on continua

    Full text link
    A voting model (or a generalization of the Glauber model at zero temperature) on a multidimensional lattice is defined as a system composed of a lattice each site of which is either empty or occupied by a single particle. The reactions of the system are such that two adjacent sites, one empty the other occupied, may evolve to a state where both of these sites are either empty or occupied. The continuum version of this model in a Ddimensional region with boundary is studied, and two general behaviors of such systems are investigated. The stationary behavior of the system, and the dominant way of the relaxation of the system toward its stationary state. Based on the first behavior, the static phase transition (discontinuous changes in the stationary profiles of the system) is studied. Based on the second behavior, the dynamical phase transition (discontinuous changes in the relaxation-times of the system) is studied. It is shown that the static phase transition is induced by the bulk reactions only, while the dynamical phase transition is a result of both bulk reactions and boundary conditions.Comment: 10 pages, LaTeX2

    Nonuniform autonomous one-dimensional exclusion nearest-neighbor reaction-diffusion models

    Full text link
    The most general nonuniform reaction-diffusion models on a one-dimensional lattice with boundaries, for which the time evolution equations of corre- lation functions are closed, are considered. A transfer matrix method is used to find the static solution. It is seen that this transfer matrix can be obtained in a closed form, if the reaction rates satisfy certain conditions. We call such models superautonomous. Possible static phase transitions of such models are investigated. At the end, as an example of superau- tonomous models, a nonuniform voter model is introduced, and solved explicitly.Comment: 14 page

    h-deformation of Gr(2)

    Full text link
    The hh-deformation of functions on the Grassmann matrix group Gr(2)Gr(2) is presented via a contraction of Grq(2)Gr_q(2). As an interesting point, we have seen that, in the case of the hh-deformation, both R-matrices of GLh(2)GL_h(2) and Grh(2)Gr_h(2) are the same

    Phase transition in an asymmetric generalization of the zero-temperature Glauber model

    Full text link
    An asymmetric generalization of the zero-temperature Glauber model on a lattice is introduced. The dynamics of the particle-density and specially the large-time behavior of the system is studied. It is shown that the system exhibits two kinds of phase transition, a static one and a dynamic one.Comment: LaTeX, 9 pages, to appear in Phys. Rev. E (2001
    • …
    corecore